## Algebra - quadratics

Expanding and factorising

| Glue Zone |  |  |  |
| :--- | :--- | :--- | :--- |
| G.g. sad, sick, tired, <br> bored | E.g. happy, calm, <br> focused, ok | E.g. worried, excited, <br> annoyed | E.g. angry, terrified, <br> elated |
|  |  |  |  |

4. Solve the simultaneous equations

$4 x+y=-1$
$4 x-3 y=7$
$y=$

## When Co-Efficient's are not the same...

$$
\text { Example 1: Solve: } \begin{aligned}
3 x+3 y & =18(1) \\
5 x+y & =-2(2)
\end{aligned}
$$

SAME SIGN SUBTRACT

Step 1: When neither co-efficient's are the same we multiply one or both equations to make them the same...

Multiply equation (2) by x3

$$
15 x+3 y=-6(3)
$$

We call this equation (3)

Step 2: Eliminate the letter with the same co-efficient (by SUBTRACTING in this question)
(3) $15 x+3 y=-6$
(1) $\frac{3 x+3 y=18-}{12 x}=-24$
$(\div 12)$

We use the original equation 1 and new equation 3.

## When Co-Efficient's are not the same...

## Example 1: <br> $$
\text { Solve: } \begin{aligned} & 3 x+3 y=18(1) \\ & 5 x+y=-2(2) \end{aligned}
$$

Step 3: To find $y$, we substitute $x=-2$ back into one of the original equations (equation 1)

Step 4: Check your answers using equation 2

$$
\begin{gathered}
(3 x-2)+3 y=18 \\
-6+3 y=18 \\
(+6) \\
3 y=24 \\
(\div 3) \\
y=8
\end{gathered}
$$

$$
x=-2, y=8
$$

$$
(5 x-2)+8=-2
$$

$$
\int \begin{aligned}
-10+8 & =-2 \\
& =-2
\end{aligned}
$$

## When Co-Efficient's are not the same...

$$
\text { Eg 2: } \quad \text { Solve: } \begin{aligned}
& \mathbf{3 x}+\mathbf{4 y}=\mathbf{7}(\mathbf{1}) \\
& \mathbf{5 x}-\mathbf{2 y}=\mathbf{1 6}(\mathbf{2})
\end{aligned}
$$

## DIFFERENT SIGN ADD

Step 1: When neither co-efficient's are the same we multiply one or both equations to make them the same...

Multiply equation (2) by x2

$$
10 x-4 y=32(3)
$$

We call this equation (3)

We use the original equation 1 and new equation 3.

Step 2: Eliminate the letter with the same co-efficient (by SUBTRACTING in this question)

$$
\text { (1) } 3 x+4 y=7
$$

$$
\text { (3) } 10 x-4 y=32+1
$$

$$
(\div 13)
$$

$$
x=3
$$

## When Co-Efficient's are not the same...

Eg2: $\quad$ Solve: $\mathbf{3 x}+\mathbf{4 y}=\mathbf{7}$ (1)

$$
5 x-2 y=16(2)
$$

Step 3: To find $y$, we substitute $x=3$ back into one of the original equations (equation 1)

$$
(3 \times 3)+4 y=7
$$

$$
9+4 y=7
$$

$$
(-9)
$$

$$
4 y=-2
$$

$$
(\div 4)
$$

$$
y=-0.5
$$

Step 4: Check your answers using the original (equation 2)

$$
x=3, y=-0.5
$$

$$
(5 \times 3)-(2 x-0.5)=16
$$

$$
15--1=16
$$

$$
16=16
$$

## When Co-Efficient's are not the same...

Eg3: $\quad$ Solve: | $\mathbf{x}+\mathbf{4 y}=\mathbf{6 ( 1 )}$ |
| ---: | :--- |
| $3 \mathbf{x}-\mathbf{2 y}=\mathbf{4 ( 2 )}$ |$\quad$ DIFFERENT

Step 1: When neither co-efficient's are the same we multiply one or both equations to make them the same...

Multiply equation (2) by x2

$$
6 x-4 y=8(3)
$$

We call this equation (3)
We use the original equation 1 and new equation 3.

Step 2: Eliminate the letter with the same co-efficient (by ADDING in this question)
(1) $x+4 y=6$
(3) $6 x-4 y=8+$
$(\div 7)$
$x=2$

## When Co-Efficient's are not the same...

Eg3:
Solve: $\quad x+4 y=6(1)$

$$
3 x-2 y=4(2)
$$

Step 3: To find $y$, we substitute $x=2$ back into one of the original equations (equation 1)

$$
\begin{aligned}
& 2+4 y=6 \\
& (-2) \\
& 4 y=4 \\
& (\div 4) \\
& y=1
\end{aligned}
$$

Step 4: Check your answers using the original (equation 2)
$x=2, y=1$
$(3 \times 2)-(2 \times 1)=4$

$$
6-2=4
$$

$$
4=4
$$

> Solve:
> a) $5 x+2 y=20$
> $2 x+4 y=24$
> b) $3 x+2 y=26$
> $4 x-y=20$

Extension - Solve:
$4 x+6 y=5$
$3 x+4 y=4$

Solve:
c) $2 x+9 y=69$

$$
x+3 y=24
$$

d) $4 x+3 y=19$

$$
3 x-4 y=8
$$

$$
\begin{aligned}
& \text { Extension } 2 \text { - Solve: } \\
& \qquad \begin{array}{c}
x=52-2 y \\
5 x+7 y=70
\end{array}
\end{aligned}
$$

## A1-Solve:

a) $4 x-3 y=14$
$2 x+2 y=-7$
b) $7 x-2 y=13$
$4 x-3 y=13$

A2 - Solve:
a) $2 x+9 y=69$
$x+3 y=24$
b) $4 x+3 y=19$
$3 x-4 y=8$

Extension: Zach has 10p and 20p coins in a jar. There are a total of 18 coins which add up to $£ 2.30$. Work out the number of 10p and 20p coins Zach has.

Traffic light your work today.

Thumbs down-I don't understand it
Thumbs across- I understand some of it
Thumbs up-I understand all of it

A further task will be on the website for you to complete later today - one merit for all who do ©

