

Blue Zone Going slow	Green Zone Good to go	Yellow Zone Caution Starting to lose control	Red Zone Stop! Out of control
E.g. sad, sick, tired, bored	E.g. happy, calm, focused, ok	E.g. worried, excited, annoyed	E.g. angry, terrified, elated

4. Solve the simultaneous equations

$$4x + y = -1$$
$$4x - 3y = 7$$

Here is a GCSE question...

Example 1: Solve:
$$3x + 3y = 18$$
 (1)

$$5x + y = -2$$
 (2)

SAME SIGN SUBTRACT

Step 1: When neither co-efficient's are the same we **multiply** one or both equations to make them the same...

Multiply equation (2) by x3

$$15x + 3y = -6$$
 (3)

We call this equation (3)

We use the original equation 1 and new equation 3.

Step 2: Eliminate the letter with the same co-efficient (by SUBTRACTING in this question)

(3)
$$15x + 3y = -6$$

(1) $3x + 3y = 18 - 12x = -24$
(÷ 12)

$$x = -2$$

Example 1: Solve:
$$3x + 3y = 18$$
 (1)

$$5x + y = -2$$
 (2)

Step 3: To find y, we substitute x = -2 back into one of the original equations (equation 1)

$$(3 \times -2) + 3y = 18$$

 $-6 + 3y = 18$
 $(+6)$
 $3y = 24$
 $(\div 3)$
 $y = 8$

$$x = -2, y = 8$$

 $(5 \times -2) + 8 = -2$
 $-10 + 8 = -2$
 $= -2$

Eg 2: Solve:
$$3x + 4y = 7$$
 (1)

$$5x - 2y = 16$$
 (2)

DIFFERENT SIGN ADD

Step 1: When neither co-efficient's are the same we **multiply** one or both equations to make them the same...

Multiply equation (2) by x2

$$10x - 4y = 32$$
 (3)

We call this equation (3)

We use the original equation 1 and new equation 3.

Step 2: Eliminate the letter with the same co-efficient (by SUBTRACTING in this question)

(1)
$$3x + 4y = 7$$

(3) $10x - 4y = 32 + 13x = 39$
(÷ 13)
 $x = 3$

Eg2: Solve:
$$3x + 4y = 7$$
 (1)

$$5x - 2y = 16$$
 (2)

Step 3: To find y, we substitute
x = 3 back into one of the
original equations (equation 1)

$$(3 \times 3) + 4y = 7$$

 $9 + 4y = 7$
 (-9)
 $4y = -2$
 $(\div 4)$
 $y = -0.5$

Step 4: Check your answers using the *original* (equation 2)

$$x = 3$$
, $y = -0.5$

$$(5 \times 3) - (2 \times -0.5) = 16$$

 $15 - -1 = 16$

Eg3: Solve:
$$x + 4y = 6$$
 (1)

3x - 2y = 4 (2)

DIFFERENT SIGN ADD

Step 1: When neither co-efficient's are the same we **multiply** one or both equations to make them the same...

Multiply equation (2) by x2

$$6x - 4y = 8$$
 (3)

We call this equation (3)

We use the original equation 1 and new equation 3.

Step 2: Eliminate the letter with the same co-efficient (by ADDING in this question)

(1)
$$x + 4y = 6$$

(3) $6x - 4y = 8 + 7x = 14$
(÷ 7)
 $x = 2$

Eg3: Solve:
$$x + 4y = 6$$
 (1) $3x - 2y = 4$ (2)

Step 3: To find y, we substitute
x = 2 back into one of the
original equations (equation 1)

$$2 + 4y = 6$$

 (-2)
 $4y = 4$
 $(\div 4)$
 $y = 1$

Step 4: Check your answers using the *original* (equation 2)

$$x = 2, y = 1$$

 $(3 \times 2) - (2 \times 1) = 4$
 $6 - 2 = 4$
 $4 = 4$

Solve:

a)
$$5x + 2y = 20$$

 $2x + 4y = 24$

b)
$$3x + 2y = 26$$

 $4x - y = 20$

Solve:

c)
$$2x + 9y = 69$$

 $x + 3y = 24$

d)
$$4x + 3y = 19$$

 $3x - 4y = 8$

Extension – Solve:

$$4x + 6y = 5$$
$$3x + 4y = 4$$

Extension 2 – Solve:

$$6x = 52 - 2y$$

 $5x + 7y = 70$

A1 - Solve:

a)
$$4x - 3y = 14$$

$$2x + 2y = -7$$

b)
$$7x - 2y = 13$$

 $4x - 3y = 13$

A2 - Solve:

a)
$$2x + 9y = 69$$

 $x + 3y = 24$

b)
$$4x + 3y = 19$$

 $3x - 4y = 8$

Extension: Zach has 10p and 20p coins in a jar. There are a total of 18 coins which add up to £2.30. Work out the number of 10p and 20p coins Zach has.

Traffic light your work today.

Thumbs down-I don't understand it

Thumbs across- I understand some of it

Thumbs up- I understand all of it

A further task will be on the website for you to complete later today – one merit for all who do