Polymerisation

All (Grade C) Most (Grade B) Some (Grade A/A*)

State how polymers are polymers are made and be able to name them

Some (Grade A/A*)

Analyse the properties of polymers in relation to their uses

KEYWORD: Polymer, Monomer

Write the name of this structure and it's formula. What else does the diagram tell you?

Workout the meaning...

Clue: 'mer' is latin for 'part'

Define 'monomer' and 'polymer'

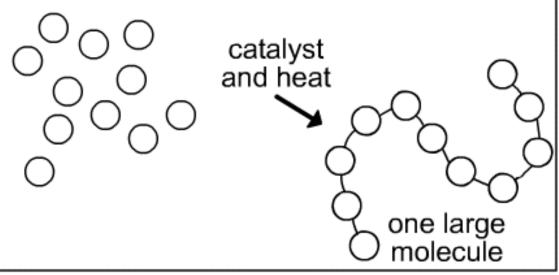
Human modelling

Stand up!!!

You are now an individual MONOMER

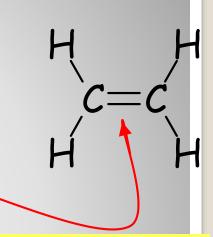
How will you make a POLYMER?

REVIEW


All (Grade C)	Most (Grade B)	Some (Grade A/A*)
State how polymers are made	Describe how polymers are made and be able to name them	Analyse the properties of polymers in relation to their uses

Polymerisation

many small molecules



The science behind it...

When carbon forms compounds, it forms 4 bonds to other atoms.

The double bonds in the alkene are easily broken.

When the double bond breaks, then each carbon is free to make a new bond.

This can join to another molecule which has its double bond broken.

Poly(ethene)

One important reaction of alkenes involves the joining together of alkene molecules.

This is called **addition polymerisation** and is written as:

Polypropene

Other **unsaturated** molecules such as propene, vinyl chloride and styrene can also be polymerised to produce a range of **plastics**.

PTFE

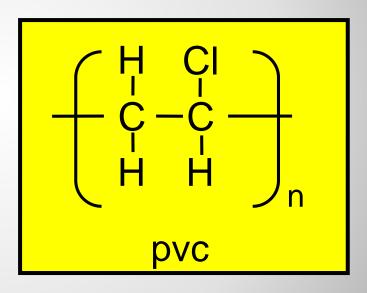
 Tetrafluoroethane is another alkene that is made into an important plastic used to coat non-stick pans: polytetrafluoroethane or PTFE.

$$\begin{pmatrix}
F \\
C = C
\end{pmatrix}
F$$

$$\begin{pmatrix}
F \\
C - C
\end{pmatrix}$$

$$\begin{pmatrix}
F \\
C - C
\end{pmatrix}$$

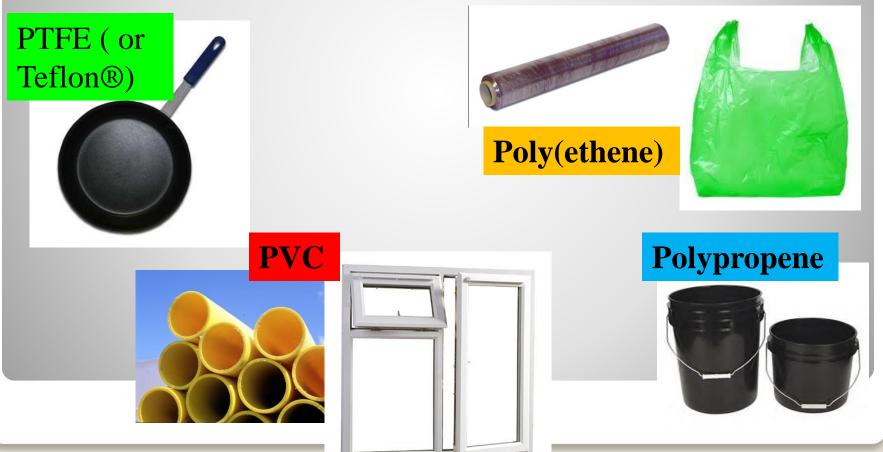
$$\begin{pmatrix}
F \\
F
\end{pmatrix}$$


tetrafluoroethene

Poly(tetrafluoroethane) or PTFE

PVC

Fill in the product that will be obtained from vinyl chloride


REVIEW

All (Grade C)	Most (Grade B)	Some (Grade A/A*)
State how polymers are made	Describe how polymers are made and be able to name them	Analyse the properties of polymers in relation to their uses

Properties and Uses

 Analyse the use of the polymer and identify what properties the polymer has that makes it suitable for its use

New Materials and their properties

Work together to organise the cards in a logical way

REVIEW

All (Grade C)	Most (Grade B)	Some (Grade A/A*)
State how polymers are made	Describe how polymers are made and be able to name them	Analyse the properties of polymers in relation to their uses

Odd one out

Protein Rubber DNA Polyethene

