Area

LO: To be able to find the area of rectilinear shapes.

LO: To be able to find missing angles in polygons.

1) Zone
2) What is a polygon?
3) How many degrees in a Polygon?
4) What is the formula for finding the angle sum of a polygon?
5) Practice questions
6) Follow up work.

Glue Zone			
G.g. sad, sick, tired, bored	E.g. happy, calm, focused, ok	E.g. worried, excited, annoyed	E.g. angry, terrified, elated

LO: To be able to find missing angles in Polygons.
What is a Polygon?

A shape made up of straight sides.
Which of the following are polygons?
a).

c).

d).

e).

$\mathrm{g})$.

i).

().
$\mathrm{k})$.

LO: To be able to find missing angles in Polygons.

Interior angles of polygons

This is just one of the six interior angles of this
 polygon

A polygon with 3 sides is a triangle

The angle sum of a triangle is 180°

$$
\widehat{a}+\widehat{b}+\widehat{c}=180^{\circ}
$$

What is the angle sum of a quadrilateral?

The angle sum of a quadrilateral is 360°

Here is a different quadrilateral but the method is the same

The angle sum of a quadrilateral is 360°

What is the angle sum of a pentagon?

This time
you can divide the polygon into 3 triangles

The angle sum of a pentagon is 540°

You can find the angle sum of any polygon by dividing it up into

What is the formula for finding the angle sum of a dodecagon (a 12-sided polygon)?

Pairs of interior and
 Exterior angles add up to 180°

Sum of Interior angles, where n is the number

- The sum of the interior angles of a regular polygon can be calculated by considering how many triangles the polygon is made up of...

Pentagon
5 sides
3 triangles
3×180
$=540^{\circ}$

Hexagon
6 sides
4 triangles
4×180
$=720^{\circ}$

Heptatreput/dagoptagon

$$
7 \text { sides }
$$

5 triangles
5×180
$=900^{\circ}$

Heptagon is the Greek name, and Septagon comes from
\rightarrow Because a lotof geometry originated in Greece,
Heptagon is more commonly

> used...

An ' n '-gon (unspecified number of sides)
n sides

$$
(n-2) \text { triangles }
$$

$$
(n-2) \times 180
$$

$=180(n-2)$ degrees

Finding a formula

What is the formula for finding the angle sum of a dodecagon (a 12-sided polygon)?

1) What was our formula?
2) Angle sum of a n sided polygon $=180(n-1)$
3) How many sides does a dodecagon have?
4) What calculation am I going to do to work out the angle sum?
5) Angle sum of a 12 sided shape $=180(12-1)$

$$
\begin{aligned}
& =180 \times 11 \\
& =1980^{\circ}
\end{aligned}
$$

LO: To be able to find missing angles in Polygons.

Use the formula you have just found to find the angle sum of a polygon with
a). 11 sides
b).
14 sides
c). 19 sides
d). 23 sides
e).
33 sides

1) What was our formula?
2) Angle sum of a n sided polygon $=180(n-1)$
3) How many sides does this shape have?
4) What calculation am I going to do to work out the angle sum?
5) Angle sum of a 7 sided shape $=180(11-1)$

$$
\begin{aligned}
& =180 \times 10 \\
& =1800^{\circ}
\end{aligned}
$$

LO: To be able to find missing angles in Polygons.
What is the missing angle?

1) What was our formula?
2) Angle sum of a n sided polygon $=180(n-1)$
3) How many sides does this shape have?

4) What calculation am I going to do to work out the angle sum?
5) Angle sum of a 7 sided shape $=180(7-1)$ What do the 6 angles in the shape add up to?

$$
\begin{aligned}
& =180 \times 6 \\
& =1080^{\circ}
\end{aligned}
$$

What will the $7^{\text {th }}$ angle be?

LO: To be able to find missing angles in Polygons.

What are the missing angles?

1) What was our formula?
2) Angle sum of a n sided polygon $=180(n-1)$
3) How many sides does this shape have?
4) What calculation am I going to do to work out the angle sum?
5) Angle sum of a n sided shape $=180(n-1)$

$$
\begin{aligned}
& =180 \times n \\
& =0
\end{aligned}
$$

6) What is the value of the missing angle?

Plenary

This shape is a Regular Hexagon. Line $B E$ is a line of symmetry.
a) Calculate the size of Angle $A B E$
b) Work out the size of Angle DCE
c) Calculate the size of Angle BEC

EBI

Glue Zone			
G.g. sad, sick, tired, bored	E.g. happy, calm, focused, ok	E.g. worried, excited, annoyed	E.g. angry, terrified, elated

LO: To be able to find the area of rectilinear shapes.
Follow up work

For ALL worksheets you can either print out and write your answers on, or write your answers on paper.
Please take pictures of your work and email to jo.gould@grangepark.kent.sch.uk

